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INTRODUCTION

It is well known that the Banach contraction principle is a very useful, simple and classical tool in nonlinear
analysis. There exist a vast literature concerning its various generalizations and extensions. In (6), Matthews
extended the Banach contraction mapping theorem to the partial metric context for applications in program
verification. After that, fixed-point results in partial metric spaces have been studied by Ran and Reurings (7).
Recently, Abbas and Jungck (1), have studied common fixed point results for non-commuting mappings without
continuity in cone metric space with normal cone, and a great deal of new results in this notion published in (3, 4, 5,
8).

First, we recall some definitions of partial metric spaces and some their properties.

Definition 1.1
A partial metric space on nonempty set X is a function p:

X x X —? Rt*suchthatforallx,y, z € X:

(P x=y < p(x, y) = p(x, ¥) = p(y, ¥);

(P2) p(x, X) < p(x, Y);

(P3) p(X, ¥) = pP(Y, X);

(P4) P(X, Y) < p(x,2) +p (2, y) = P (2, 2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It is clear that if
p(x, y) =0, then from (pl), (p2), and (p3), we conclude that x = y. But if x =y, p(x, y) may not be 0. If p is a partial
metric on X, then the function p: X x X — R*, given by

P* (X, y) = 2p(x, y) = p(X, X) = P(Y, ¥),

Is a metric on X.

Definition 1.2
Let (X, p) be a partial metric space. Then
() a sequence {xn} in partial metric space (X, p) converges to a point x € X

if and only if p(x, x) = limn "=* p(X, Xn);
(ii) a sequence {xn} in partial metric space (X, p is called cauchy sequence if
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there exists(and is finite ) if lim ™™ p(xm, xn);
(iii) a partial metric space (X, p) is said to be complete if every Cauchy sequence

{ xn }in X converges to be x € X, that is p(x, x) = lim ™™>* p(Xm, Xn)
Now; we recall the following technical Lemma (see [2] and [6]).

Lemma 1.3
Let (X, p) be a partial metric space, then
(a) { xn } is a Cauchy sequence is (X, p) if and only if it is a Cauchy sequence
in the metric space (X, p).
(b) a partial metric space (X, p) is complete if only if the metric space (X, p®)

is complete; furthermore lim "> ps(xn, X) = 0 and if only if
lim lim
p(X, X) = "2 p(Xn, X) = "M* p(Xn, Xm).
Definition 1.4. A point u € X is called a coincidence point of the pair f, g and

v is its point of coincidence if fu = gu = v. The pair (f, g) is said to be weakly
compatible if for each x € X, f x = gx implies that f gx = g f x.

2. Main results
Theorem 2.1
Let (X, p) be a compleat partial metric space and the mappings

f, g, h: X — X satisfy:

o

p(f x, gy) = %ip(hx, hy)+ @2P (hx, £+ %P (hy, gy)+ #4P (hx, gy)+ %P (hy, tx), forallx, y € X, where %i are

| > o <1l |
nonnegative and =1 f(X) Ug(X) & h(X) and h(X) is a complete subspace of X, then f, g, and h have a
unigue point of coincidence. Moreover, if f, h and g, h are weakly compatible, then f, g, and have a unique common
fixed point.

Proof. Let xo<€ X be arbitrary. By using the condition f(X) Ug(X) < h(X), choose a sequence {xn} such that hxan+1 =
fxan and hxzn+2 = gxeon+1 for all
n € N. Applying contractive condition we obtain that

p(hxan+1, hxanss) = p(fxan, gxanst) S F1p(hxan, hxans1) + %2 p(hxan, hxane1)
+ % p(hxanea, hxaniz) + %4 p(hixan, hxana) + %5 p(hxansa, hxane1))

= @1 (hixan, hxant) + %2 p(hxan, hxene)

+ 93 p(hxans1, hxaniz) + %4 p(hxan, hxane)

+ %4 p(hxanea, hxonsz) = F4 p(hixant, hxanss) + 95 p(hxanet, hxansa))

< @ (hxan, hxanst) + 2 p(hxan, hxanea)

+ % p(hxans, hxaniz) + 4 p(hxan, hxans)

+ %4 p(hxans1, hxansz) + % p(hxansa, hxane)) (2.1)

It follows that (1- % - %4 - %5 \p(hxans1, hxansz) < (F1-%2 -4 )p(hxan, hxansa).
That is

p(hx2n+1’ hx2n+2) < (

and similarly

o +a,+a,

] p(hXZn ! hx2n+l)’

l-o;—a,—a 22)
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p(hXzne2, hXanes) = p(fXanet, gXone2) S O 1p(hXane1, hXane2)

+ X op(hxans1, hxans2) + X 3p(hXans2, Xan+s)

+ & 4p(hxan+1, hxanss) + X sp(hxan+z, hXan+2))

_ @ p(hxan+1, hxons2) + Xz p(hxans1, hxzns2)

+ & 3p(hxans2, hxans) + X ap(hxans1, hXane2)

+ Q& 4p(hxans2, hxanss) = X ap(hxans2, hxans2) + & sp(hXan+2, Xan+s))
_ Qip(hxans, hxane2) + X op(hxans1, hxans2)

+ & 3p(hxans2, hxanss) + X ap(hxans1, hXane2)

+ & p(hxzns2, hxonss) + X sp(hXans2, hXzn+3)). (2.3)

It follows that (1= & 3= & 4= X 5)p(hxansz, hXonia) S (O 1+ O o+ O )p(hXans1, hXans2),

that is

p(hX2n+2’ hx2n+3) < (

o +a,+a,

j p(hX2n+1’ hX2n+2)

l-a,—a,—a;

2
S( al+a2+a4 jp(hx2n’hx2n+1)
5

l-a,-a,—«a

(2.4)
Now, from (2.2) and (2.4) by induction, we obtain that

J p(hXZH ! hx2n+1)

o +a,+a,

p(hX2n+1’ hX2n+2) S£1_ Q3 — 0y — O

2
S( SR AL j p(h%, 5, h%n)
5

l-o—a, -«

3
S( R Rl J P(h%, 2, N%, )
5

(2.5)

l-o,—a, -«

n+3
s...s( T, T a, J p(hx,, hx)
5

l-o,—-0,—«

On the other hand.
( ata,+a,
(2.6) p(hX2n+2’ h)(2n+3) <\1- O3 — 0y — Qs
n+4
<. s( R R J p(hx,, hx)
5

l-a,—a, -«

J p(hx2n+1’ hx2n+2)

a+a,+a
a:(l 1 TG Ty j
—a,—a, —q, .
Let 8 74 7%/ Gince

p(hxzn+1, hx2m+1) < p(hXan+1, hXan+2) + p(hXan+2, hXam+1) = p(hXan+1, hXan+w),
and

p(hX2n+2, hX2m+1) < p(hX2n+2, hX2n+3) + p(hX2n+3, hX2m+1) - p(hX2n+3, hX2n+3).
Then for every n <m, we have

p(hXan+1, hXam+1) < p(hXan+1, hXan+2) + ... + p(hXan, hXom+1)

< (@™ +a™ +..+a™) p(hx,hx) (2.7)
<a"@+a+a’+..+a")p(hx, hx)
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n+l

=a”(ll_“ Jp(hxo,hxl),

and similarly

n+l

p(hXZn'hXZmﬂ) < an(ll a

-

Jp(hxo,hxl)

n+l

Pl ) San(ll -

-

Jp(hxyhxl)

and (2.8)

Jp(hxoyhxl)

n+l

p(hmhx,n)Sa”[ll ¢

-

Hence forn<m
n+l

p(hmhxm)Sa"(ll =

-

jp(hxo,hxl) (2.9)

Where &> 0asn —>%, Thus lim™>= p(hxn, hxm) = 0. By definition of ps,

we have ps(x, y) < p(x, y), so lim M—>3C ps(hx, hxm) = 0. Then by Lemma 1.3, we conclude that {hxn} is a Cauchy
sequence in (ps,X). Since the subspace h(X) is complete, there exist u, v € X such that hx, — v = hu(n —>),

We will prove that hu = fu = gu. Firstly, let us estimate that p(hu, fu) =
p(v, fu). We have that

p(hu, fu) = p(hu, hxzne2) + p(hXzn+2, fu) = p(hXzn+2, hXzn+2)

< p(hu, hxzne2) + p(hXanez, fu) = p(V, hXzne2) + p(gXans1, fu)
(2.10)
On the other hand

p(fu, gxens) = F1p(hu, hxans) + %2 2p(hu, fu)
+ % p(hxanst, gxanst) + F4 p(hu, gxanss) + &5 p(hxansa, fu))
=% p(v, fx2n) + @ p(v, fu) + % P(fX2n, gXan+1)

+ %4 p(v, gxan1) + 95 pfxan, fu)). (2.11)
It follows by (2.10)

p(fU,V) < p(u’hXZn+2)+ p(gX2n+1’ fU)
< P(U, 9%p) + (e + ) P(U, ;) + (o, + ) PV, fU)

+ a3 p(Xy, 9%0,0) + 0, P(U, 9%,,.,) + a5 P(X,,, TU). (2.12)
That is

(1= % = %) p(fu, v) < (P2 + F)p(, fan) + (1 + “4)p(v, gxama)

+ % p(fxan, gxan1) + &5 p(fxan, fu). (2.13)
Then
P, fu) < [1‘““] P(v, ,,) + (11‘“] PV, 9%,.,)
—Q, —Q, -, —Qq

+("‘3Jp(fx2n,gxm>+[“5jp(fxmfuy (2.14)

l-a,-a, l-a, -,

Since p(v, gxzn+1) = lim > p(hxn, hxzn+2) = 0, so similarly we can show that
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lim N—>9C p(v, fxan) = 0, lim "> p(fu, fxzn) = 0, and lim "> p(gxan+1, fXan) = 0.
By gathering of later obtained results we have p(v, fu) = 0, thatis fu = hu = v.

Similarly using

p(hu, gu) < p(hu,hx,,.;) + (X%, GU) — P(hXy,.0, h%0.4)
<p(huhx,,,) + p(hX,,.;, gu)
=p(huhx,,,) + p(f,,, gu) (2.15)

it can be deduced that hu = gu = v. It follows that v is a common point of
coincidence for f, g, h, that is

v=fu=gu=hu.

Now we prove that the point of coincidence of f, g, h is unique. Suppose that
there is another point vl 2 X such that

vi1 = fur = gu1 = hug,

for some u1 € X. Using the contractive condition we obtain that

p(v;vy) = p(fu, gu) + e p(hu, hu) + e, p(hu, u)
+agp(hu, gu) +a, p(hu, gu) + o5 p(hu, u)
=0, p(V, ;) + 5, p(V,V) + 5 p(Vy, V) +0 PV, V) + a5 p(V, V)
<o p(v, )+, PV, V) + 5 p(\, V) + 5, PV, V) + 65 PV, V)
=(a +a, + o5+, + ) p(v Vi)
Since (X 1+ A+ O3+ 0,4+ Os)S 1 it follows that p(v, vi) = 0, that is, v = vi.
Using weak compatibility of the pairs (f, h) and (g, h) and Proposition 1.12 of

[1], it follows that the mappings f, g, h have a unique common fixed point, that is, fv = gv=hv =v.
Now; by above Theorem we have the following results.

Corollary 2.2
Let (X, p) be a partial metric space and the mappings f, g, h :

X — X satisfy
. <ap . 1) +ﬂ[(hx, fx) + p(hy, gy)] +7 [p(hx, gy) + p(hy, fX)Lfor all x, y € X, where & BY 20 and
a+2B+27 1 f1(x) Ug(x) < h(X)

and h(X) is a complete subspace of X, then f, g, and h have a unique point of
coincidence. Moreover, if (f, g) and (g, h) are weakly compatible, then f, g, and h have a unique common fixed point.

Corollary 2.3
Let (X, p) be a complete partial metric space, and let the mappingsf, g :X — X satisfy
p(fx, ay) < & p(x, ) P (p(x, 5, p(y, ay)l + 7 Ip(x, ay) + p(y, X,

forallx, y € X, where ALY 2 and ¥T2B+2Y <1 Thentand g have a
unique common fixed point inX. Moreover, any fixed point of f is a fixed point of g, and conversely.

Corollary 2.4. Let (X, p) be a partial metric space, and letf, g : X — X be
such thatf(X) < g(X). Suppose that
p(fx, fy) < @ p(ix, 99 + £ piy, ay) + 7 plox. gy)

for all x, y € X, where a,py e [0, 1] and a+pf+y <1, and let fx = gx
imply that fgx = ggx for each x € X. If f(X) or g(X) is a complete subspace
of X, then the mappings f and g have a uniqgue common fixed point in X.
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Example 2.5
Letp: X x X —[0,%) by p(x, y) = max{x, y}.Then (X, p) is
complete because (X, dp) is complete. Indeed for any x,y € X.

dp(x, ¥) = 2p(x, y) = p(x, X) = p(y, ¥) = 2max{x, y} = (x +y) = [x = y|

X X X
Thus (X, dp) = ([0,+ ), |.]) is the usual metric space, which complete. We define fx = 8 , OX = 12 andhx= 2 then
X X y X y
p(hx, hy) = 2 ; p(hx, ) = 2 ; p(hy, gy) = 2 ; p(hx, gy) = 2 ; p(hy, %) = 2 ;
X

and p(fx, gy) = 8
X

p(fx, gy) =8 = F1p(hx, hy) + %2 p(hx, x) + % p(hy, gy) + % p(hx, gy) + % p(hy, )

X X y X X
=a1§+a2§+a3§+a45+a55

> X X
<Qa)-<<
le 272

Hence all the conditions of Theorem (2.1) are satisfied. Therefor x = 0 is common fixed point of the mappings f,
g, and h.

Example 2.6

Similarly of example (2.5) let p : X x X = [0, %) by p(x, y) =
max{x, y}. We define fx = -x2, gx = x2 and hx = x3 then
p(hx, hy) = x3 p(hx, fx) = X3 p(hy, gy) = y?; p(hx, gy) = x3; p(hy, fx) = x?;
and p(fx, gy) = y?

<
p(x, gy) = y2= Fip(hx, hy) + %2 p(hx, i) + % p(hy, gy) + % p(hx, gy) + % p(hy, fx)

= alx3+ a2x3+ a3y3+ a4y3+ aSX3
5
3 3
<Qa)yi<x
i=1

Hence all the conditions of Theorem (2.1) are satisfied. Therefor x = 0 is common fixed point of the mappings f, g,
and h.
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